summaryrefslogtreecommitdiffstats
path: root/netbsd/NetBSDProcessList.c
blob: e6a0e6b1af772ca66cb7c06fb9f98527178b1b34 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
/*
htop - NetBSDProcessList.c
(C) 2014 Hisham H. Muhammad
(C) 2015 Michael McConville
(C) 2021 Santhosh Raju
(C) 2021 htop dev team
Released under the GNU GPLv2, see the COPYING file
in the source distribution for its full text.
*/

#include "NetBSDProcessList.h"

#include <kvm.h>
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/mount.h>
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/sched.h>
#include <sys/swap.h>
#include <sys/sysctl.h>
#include <sys/types.h>
#include <uvm/uvm_extern.h>

#include "CRT.h"
#include "Macros.h"
#include "Object.h"
#include "NetBSDProcess.h"
#include "Process.h"
#include "ProcessList.h"
#include "Settings.h"
#include "XUtils.h"

static long fscale;
static int pageSize;
static int pageSizeKB;

ProcessList* ProcessList_new(UsersTable* usersTable, Hashtable* pidMatchList, uid_t userId) {
   const int mib[] = { CTL_HW, HW_NCPU };
   const int fmib[] = { CTL_KERN, KERN_FSCALE };
   int r;
   size_t size;
   char errbuf[_POSIX2_LINE_MAX];

   NetBSDProcessList* opl = xCalloc(1, sizeof(NetBSDProcessList));
   ProcessList* pl = (ProcessList*) opl;
   ProcessList_init(pl, Class(NetBSDProcess), usersTable, pidMatchList, userId);

   size = sizeof(pl->cpuCount);
   r = sysctl(mib, 2, &pl->cpuCount, &size, NULL, 0);
   if (r < 0 || pl->cpuCount < 1) {
      pl->cpuCount = 1;
   }
   opl->cpus = xCalloc(pl->cpuCount + 1, sizeof(CPUData));

   size = sizeof(fscale);
   if (sysctl(fmib, 2, &fscale, &size, NULL, 0) < 0) {
      CRT_fatalError("fscale sysctl call failed");
   }

   if ((pageSize = sysconf(_SC_PAGESIZE)) == -1)
      CRT_fatalError("pagesize sysconf call failed");
   pageSizeKB = pageSize / ONE_K;

   for (unsigned int i = 0; i <= pl->cpuCount; i++) {
      CPUData* d = opl->cpus + i;
      d->totalTime = 1;
      d->totalPeriod = 1;
   }

   opl->kd = kvm_openfiles(NULL, NULL, NULL, KVM_NO_FILES, errbuf);
   if (opl->kd == NULL) {
      CRT_fatalError("kvm_openfiles() failed");
   }

   return pl;
}

void ProcessList_delete(ProcessList* this) {
   NetBSDProcessList* opl = (NetBSDProcessList*) this;

   if (opl->kd) {
      kvm_close(opl->kd);
   }

   free(opl->cpus);

   ProcessList_done(this);
   free(this);
}

static void NetBSDProcessList_scanMemoryInfo(ProcessList* pl) {
   static int uvmexp_mib[] = {CTL_VM, VM_UVMEXP2};
   struct uvmexp_sysctl uvmexp;
   size_t size_uvmexp = sizeof(uvmexp);

   if (sysctl(uvmexp_mib, 2, &uvmexp, &size_uvmexp, NULL, 0) < 0) {
      CRT_fatalError("uvmexp sysctl call failed");
   }

   pl->totalMem = uvmexp.npages * pageSizeKB;

   // These calculations have been taken from NetBSD's top(1)
   // They need review for testing the correctness
   //pl->freeMem = uvmexp.free * pageSizeKB;
   pl->buffersMem = uvmexp.filepages * pageSizeKB;
   pl->cachedMem = (uvmexp.anonpages + uvmexp.filepages + uvmexp.execpages) * pageSizeKB;
   pl->usedMem = (uvmexp.npages - uvmexp.free - uvmexp.paging) * pageSizeKB + pl->buffersMem + pl->cachedMem;

   pl->totalSwap = uvmexp.swpages * pageSizeKB;
   pl->usedSwap = uvmexp.swpginuse * pageSizeKB;
}

static char* NetBSDProcessList_readProcessName(kvm_t* kd, const struct kinfo_proc2* kproc, int* basenameEnd) {
   /*
    * Like NetBSD's top(1), we try to fall back to the command name
    * (argv[0]) if we fail to construct the full command.
    */
   char** arg = kvm_getargv2(kd, kproc, 500);
   if (arg == NULL || *arg == NULL) {
      *basenameEnd = strlen(kproc->p_comm);
      return xStrdup(kproc->p_comm);
   }

   size_t len = 0;
   for (int i = 0; arg[i] != NULL; i++) {
      len += strlen(arg[i]) + 1;   /* room for arg and trailing space or NUL */
   }

   /* don't use xMalloc here - we want to handle huge argv's gracefully */
   char* s;
   if ((s = malloc(len)) == NULL) {
      *basenameEnd = strlen(kproc->p_comm);
      return xStrdup(kproc->p_comm);
   }

   *s = '\0';

   for (int i = 0; arg[i] != NULL; i++) {
      size_t n = strlcat(s, arg[i], len);
      if (i == 0) {
         *basenameEnd = MINIMUM(n, len - 1);
      }
      /* the trailing space should get truncated anyway */
      strlcat(s, " ", len);
   }

   return s;
}

/*
 * Borrowed with modifications from NetBSD's top(1).
 */
static double getpcpu(const struct kinfo_proc2* kp) {
   if (fscale == 0)
      return 0.0;

   return 100.0 * (double)kp->p_pctcpu / fscale;
}

static void NetBSDProcessList_scanProcs(NetBSDProcessList* this) {
   const Settings* settings = this->super.settings;
   bool hideKernelThreads = settings->hideKernelThreads;
   bool hideUserlandThreads = settings->hideUserlandThreads;
   int count = 0;
   int nlwps = 0;

   const struct kinfo_proc2* kprocs = kvm_getproc2(this->kd, KERN_PROC_ALL, 0, sizeof(struct kinfo_proc2), &count);

   for (int i = 0; i < count; i++) {
      const struct kinfo_proc2* kproc = &kprocs[i];

      bool preExisting = false;
      Process* proc = ProcessList_getProcess(&this->super, kproc->p_pid, &preExisting, NetBSDProcess_new);

      proc->show = ! ((hideKernelThreads && Process_isKernelThread(proc)) || (hideUserlandThreads && Process_isUserlandThread(proc)));

      if (!preExisting) {
         proc->ppid = kproc->p_ppid;
         proc->tpgid = kproc->p_tpgid;
         proc->tgid = kproc->p_pid;
         proc->session = kproc->p_sid;
         proc->tty_nr = kproc->p_tdev;
         proc->pgrp = kproc->p__pgid;
         proc->st_uid = kproc->p_uid;
         proc->starttime_ctime = kproc->p_ustart_sec;
         Process_fillStarttimeBuffer(proc);
         proc->user = UsersTable_getRef(this->super.usersTable, proc->st_uid);
         ProcessList_add(&this->super, proc);
         proc->comm = NetBSDProcessList_readProcessName(this->kd, kproc, &proc->basenameOffset);
      } else {
         if (settings->updateProcessNames) {
            free(proc->comm);
            proc->comm = NetBSDProcessList_readProcessName(this->kd, kproc, &proc->basenameOffset);
         }
      }

      proc->m_virt = kproc->p_vm_vsize;
      proc->m_resident = kproc->p_vm_rssize;
      proc->percent_mem = (proc->m_resident * pageSizeKB) / (double)(this->super.totalMem) * 100.0;
      proc->percent_cpu = CLAMP(getpcpu(kproc), 0.0, this->super.cpuCount * 100.0);
      proc->nlwp = kproc->p_nlwps;
      proc->nice = kproc->p_nice - 20;
      proc->time = 100 * (kproc->p_rtime_sec + ((kproc->p_rtime_usec + 500000) / 1000000));
      proc->priority = kproc->p_priority - PZERO;

      struct kinfo_lwp* klwps = kvm_getlwps(this->kd, kproc->p_pid, kproc->p_paddr, sizeof(struct kinfo_lwp), &nlwps);

      switch (kproc->p_realstat) {
      case SIDL:     proc->state = 'I'; break;
      case SACTIVE:
	// We only consider the first LWP with a one of the below states.
        for (int j = 0; j < nlwps; j++) {
          if (klwps) {
            switch (klwps[j].l_stat) {
            case LSONPROC: proc->state = 'P'; break;
            case LSRUN:    proc->state = 'R'; break;
            case LSSLEEP:  proc->state = 'S'; break;
            case LSSTOP:   proc->state = 'T'; break;
            default:       proc->state = '?';
            }
            if (proc->state != '?')
            break;
	  }
	}
        break;
      case SSTOP:    proc->state = 'T'; break;
      case SZOMB:    proc->state = 'Z'; break;
      case SDEAD:    proc->state = 'D'; break;
      default:       proc->state = '?';
      }

      this->super.totalTasks++;
      // SRUN ('R') means runnable, not running
      if (proc->state == 'P') {
         this->super.runningTasks++;
      }
      proc->updated = true;
   }
}

static unsigned long long saturatingSub(unsigned long long a, unsigned long long b) {
   return a > b ? a - b : 0;
}

static void getKernelCPUTimes(int cpuId, u_int64_t* times) {
   const int mib[] = { CTL_KERN, KERN_CP_TIME, cpuId };
   size_t length = sizeof(*times) * CPUSTATES;
   if (sysctl(mib, 3, times, &length, NULL, 0) == -1 || length != sizeof(*times) * CPUSTATES) {
      CRT_fatalError("sysctl kern.cp_time2 failed");
   }
}

static void kernelCPUTimesToHtop(const u_int64_t* times, CPUData* cpu) {
   unsigned long long totalTime = 0;
   for (int i = 0; i < CPUSTATES; i++) {
      totalTime += times[i];
   }

   unsigned long long sysAllTime = times[CP_INTR] + times[CP_SYS];

   cpu->totalPeriod = saturatingSub(totalTime, cpu->totalTime);
   cpu->userPeriod = saturatingSub(times[CP_USER], cpu->userTime);
   cpu->nicePeriod = saturatingSub(times[CP_NICE], cpu->niceTime);
   cpu->sysPeriod = saturatingSub(times[CP_SYS], cpu->sysTime);
   cpu->sysAllPeriod = saturatingSub(sysAllTime, cpu->sysAllTime);
   cpu->intrPeriod = saturatingSub(times[CP_INTR], cpu->intrTime);
   cpu->idlePeriod = saturatingSub(times[CP_IDLE], cpu->idleTime);

   cpu->totalTime = totalTime;
   cpu->userTime = times[CP_USER];
   cpu->niceTime = times[CP_NICE];
   cpu->sysTime = times[CP_SYS];
   cpu->sysAllTime = sysAllTime;
   cpu->intrTime = times[CP_INTR];
   cpu->idleTime = times[CP_IDLE];
}

static void NetBSDProcessList_scanCPUTime(NetBSDProcessList* this) {
   u_int64_t kernelTimes[CPUSTATES] = {0};
   u_int64_t avg[CPUSTATES] = {0};

   for (unsigned int i = 0; i < this->super.cpuCount; i++) {
      getKernelCPUTimes(i, kernelTimes);
      CPUData* cpu = this->cpus + i + 1;
      kernelCPUTimesToHtop(kernelTimes, cpu);

      avg[CP_USER] += cpu->userTime;
      avg[CP_NICE] += cpu->niceTime;
      avg[CP_SYS] += cpu->sysTime;
      avg[CP_INTR] += cpu->intrTime;
      avg[CP_IDLE] += cpu->idleTime;
   }

   for (int i = 0; i < CPUSTATES; i++) {
      avg[i] /= this->super.cpuCount;
   }

   kernelCPUTimesToHtop(avg, this->cpus);
}

void ProcessList_goThroughEntries(ProcessList* super, bool pauseProcessUpdate) {
   NetBSDProcessList* opl = (NetBSDProcessList*) super;

   NetBSDProcessList_scanMemoryInfo(super);
   NetBSDProcessList_scanCPUTime(opl);

   // in pause mode only gather global data for meters (CPU/memory/...)
   if (pauseProcessUpdate) {
      return;
   }

   NetBSDProcessList_scanProcs(opl);
}

© 2014-2024 Faster IT GmbH | imprint | privacy policy