/* htop - FreeBSDProcessList.c (C) 2014 Hisham H. Muhammad Released under the GNU GPL, see the COPYING file in the source distribution for its full text. */ #include "ProcessList.h" #include "FreeBSDProcessList.h" #include "FreeBSDProcess.h" #include #include #include #include #include #include #include #include #include #include /*{ #include #include #include #include #include #define JAIL_ERRMSGLEN 1024 char jail_errmsg[JAIL_ERRMSGLEN]; typedef struct CPUData_ { double userPercent; double nicePercent; double systemPercent; double irqPercent; double idlePercent; double systemAllPercent; } CPUData; typedef struct FreeBSDProcessList_ { ProcessList super; kvm_t* kd; int zfsArcEnabled; unsigned long long int memWire; unsigned long long int memActive; unsigned long long int memInactive; unsigned long long int memFree; unsigned long long int memZfsArc; CPUData* cpus; unsigned long *cp_time_o; unsigned long *cp_time_n; unsigned long *cp_times_o; unsigned long *cp_times_n; } FreeBSDProcessList; }*/ static int MIB_hw_physmem[2]; static int MIB_vm_stats_vm_v_page_count[4]; static int pageSize; static int pageSizeKb; static int MIB_vm_stats_vm_v_wire_count[4]; static int MIB_vm_stats_vm_v_active_count[4]; static int MIB_vm_stats_vm_v_cache_count[4]; static int MIB_vm_stats_vm_v_inactive_count[4]; static int MIB_vm_stats_vm_v_free_count[4]; static int MIB_vfs_bufspace[2]; static int MIB_kstat_zfs_misc_arcstats_size[5]; static int MIB_kern_cp_time[2]; static int MIB_kern_cp_times[2]; static int kernelFScale; ProcessList* ProcessList_new(UsersTable* usersTable, Hashtable* pidWhiteList, uid_t userId) { size_t len; char errbuf[_POSIX2_LINE_MAX]; FreeBSDProcessList* fpl = xCalloc(1, sizeof(FreeBSDProcessList)); ProcessList* pl = (ProcessList*) fpl; ProcessList_init(pl, Class(FreeBSDProcess), usersTable, pidWhiteList, userId); // physical memory in system: hw.physmem // physical page size: hw.pagesize // usable pagesize : vm.stats.vm.v_page_size len = 2; sysctlnametomib("hw.physmem", MIB_hw_physmem, &len); len = sizeof(pageSize); if (sysctlbyname("vm.stats.vm.v_page_size", &pageSize, &len, NULL, 0) == -1) { pageSize = PAGE_SIZE; pageSizeKb = PAGE_SIZE_KB; } else { pageSizeKb = pageSize / ONE_K; } // usable page count vm.stats.vm.v_page_count // actually usable memory : vm.stats.vm.v_page_count * vm.stats.vm.v_page_size len = 4; sysctlnametomib("vm.stats.vm.v_page_count", MIB_vm_stats_vm_v_page_count, &len); len = 4; sysctlnametomib("vm.stats.vm.v_wire_count", MIB_vm_stats_vm_v_wire_count, &len); len = 4; sysctlnametomib("vm.stats.vm.v_active_count", MIB_vm_stats_vm_v_active_count, &len); len = 4; sysctlnametomib("vm.stats.vm.v_cache_count", MIB_vm_stats_vm_v_cache_count, &len); len = 4; sysctlnametomib("vm.stats.vm.v_inactive_count", MIB_vm_stats_vm_v_inactive_count, &len); len = 4; sysctlnametomib("vm.stats.vm.v_free_count", MIB_vm_stats_vm_v_free_count, &len); len = 2; sysctlnametomib("vfs.bufspace", MIB_vfs_bufspace, &len); len = sizeof(fpl->memZfsArc); if (sysctlbyname("kstat.zfs.misc.arcstats.size", &fpl->memZfsArc, &len, NULL, 0) == 0 && fpl->memZfsArc != 0) { sysctlnametomib("kstat.zfs.misc.arcstats.size", MIB_kstat_zfs_misc_arcstats_size, &len); fpl->zfsArcEnabled = 1; } else { fpl->zfsArcEnabled = 0; } int smp = 0; len = sizeof(smp); if (sysctlbyname("kern.smp.active", &smp, &len, NULL, 0) != 0 || len != sizeof(smp)) { smp = 0; } int cpus = 1; len = sizeof(cpus); if (smp) { int err = sysctlbyname("kern.smp.cpus", &cpus, &len, NULL, 0); if (err) cpus = 1; } else { cpus = 1; } size_t sizeof_cp_time_array = sizeof(unsigned long) * CPUSTATES; len = 2; sysctlnametomib("kern.cp_time", MIB_kern_cp_time, &len); fpl->cp_time_o = xCalloc(cpus, sizeof_cp_time_array); fpl->cp_time_n = xCalloc(cpus, sizeof_cp_time_array); len = sizeof_cp_time_array; // fetch initial single (or average) CPU clicks from kernel sysctl(MIB_kern_cp_time, 2, fpl->cp_time_o, &len, NULL, 0); // on smp box, fetch rest of initial CPU's clicks if (cpus > 1) { len = 2; sysctlnametomib("kern.cp_times", MIB_kern_cp_times, &len); fpl->cp_times_o = xCalloc(cpus, sizeof_cp_time_array); fpl->cp_times_n = xCalloc(cpus, sizeof_cp_time_array); len = cpus * sizeof_cp_time_array; sysctl(MIB_kern_cp_times, 2, fpl->cp_times_o, &len, NULL, 0); } pl->cpuCount = MAX(cpus, 1); if (cpus == 1 ) { fpl->cpus = xRealloc(fpl->cpus, sizeof(CPUData)); } else { // on smp we need CPUs + 1 to store averages too (as kernel kindly provides that as well) fpl->cpus = xRealloc(fpl->cpus, (pl->cpuCount + 1) * sizeof(CPUData)); } len = sizeof(kernelFScale); if (sysctlbyname("kern.fscale", &kernelFScale, &len, NULL, 0) == -1) { //sane default for kernel provided CPU percentage scaling, at least on x86 machines, in case this sysctl call failed kernelFScale = 2048; } fpl->kd = kvm_openfiles(NULL, "/dev/null", NULL, 0, errbuf); if (fpl->kd == NULL) { errx(1, "kvm_open: %s", errbuf); } return pl; } void ProcessList_delete(ProcessList* this) { const FreeBSDProcessList* fpl = (FreeBSDProcessList*) this; if (fpl->kd) kvm_close(fpl->kd); free(fpl->cp_time_o); free(fpl->cp_time_n); free(fpl->cp_times_o); free(fpl->cp_times_n); free(fpl->cpus); ProcessList_done(this); free(this); } static inline void FreeBSDProcessList_scanCPUTime(ProcessList* pl) { const FreeBSDProcessList* fpl = (FreeBSDProcessList*) pl; int cpus = pl->cpuCount; // actual CPU count int maxcpu = cpus; // max iteration (in case we have average + smp) int cp_times_offset; assert(cpus > 0); size_t sizeof_cp_time_array; unsigned long *cp_time_n; // old clicks state unsigned long *cp_time_o; // current clicks state unsigned long cp_time_d[CPUSTATES]; double cp_time_p[CPUSTATES]; // get averages or single CPU clicks sizeof_cp_time_array = sizeof(unsigned long) * CPUSTATES; sysctl(MIB_kern_cp_time, 2, fpl->cp_time_n, &sizeof_cp_time_array, NULL, 0); // get rest of CPUs if (cpus > 1) { // on smp systems FreeBSD kernel concats all CPU states into one long array in // kern.cp_times sysctl OID // we store averages in fpl->cpus[0], and actual cores after that maxcpu = cpus + 1; sizeof_cp_time_array = cpus * sizeof(unsigned long) * CPUSTATES; sysctl(MIB_kern_cp_times, 2, fpl->cp_times_n, &sizeof_cp_time_array, NULL, 0); } for (int i = 0; i < maxcpu; i++) { if (cpus == 1) { // single CPU box cp_time_n = fpl->cp_time_n; cp_time_o = fpl->cp_time_o; } else { if (i == 0 ) { // average cp_time_n = fpl->cp_time_n; cp_time_o = fpl->cp_time_o; } else { // specific smp cores cp_times_offset = i - 1; cp_time_n = fpl->cp_times_n + (cp_times_offset * CPUSTATES); cp_time_o = fpl->cp_times_o + (cp_times_offset * CPUSTATES); } } // diff old vs new unsigned long long total_o = 0; unsigned long long total_n = 0; unsigned long long total_d = 0; for (int s = 0; s < CPUSTATES; s++) { cp_time_d[s] = cp_time_n[s] - cp_time_o[s]; total_o += cp_time_o[s]; total_n += cp_time_n[s]; } // totals total_d = total_n - total_o; if (total_d < 1 ) total_d = 1; // save current state as old and calc percentages for (int s = 0; s < CPUSTATES; ++s) { cp_time_o[s] = cp_time_n[s]; cp_time_p[s] = ((double)cp_time_d[s]) / ((double)total_d) * 100; } CPUData* cpuData = &(fpl->cpus[i]); cpuData->userPercent = cp_time_p[CP_USER]; cpuData->nicePercent = cp_time_p[CP_NICE]; cpuData->systemPercent = cp_time_p[CP_SYS]; cpuData->irqPercent = cp_time_p[CP_INTR]; cpuData->systemAllPercent = cp_time_p[CP_SYS] + cp_time_p[CP_INTR]; // this one is not really used, but we store it anyway cpuData->idlePercent = cp_time_p[CP_IDLE]; } } static inline void FreeBSDProcessList_scanMemoryInfo(ProcessList* pl) { FreeBSDProcessList* fpl = (FreeBSDProcessList*) pl; // @etosan: // memory counter relationships seem to be these: // total = active + wired + inactive + cache + free // htop_used (unavail to anybody) = active + wired // htop_cache (for cache meter) = buffers + cache // user_free (avail to procs) = buffers + inactive + cache + free // // with ZFS ARC situation becomes bit muddled, as ARC behaves like "user_free" // and belongs into cache, but is reported as wired by kernel // // htop_used = active + (wired - arc) // htop_cache = buffers + cache + arc u_long totalMem; u_int memActive, memWire, cachedMem; long buffersMem; uint64_t memZfsArc; size_t len; //disabled for now, as it is always smaller than phycal amount of memory... //...to avoid "where is my memory?" questions //sysctl(MIB_vm_stats_vm_v_page_count, 4, &(pl->totalMem), &len, NULL, 0); //pl->totalMem *= pageSizeKb; len = sizeof(totalMem); sysctl(MIB_hw_physmem, 2, &(totalMem), &len, NULL, 0); totalMem /= 1024; pl->totalMem = totalMem; len = sizeof(memActive); sysctl(MIB_vm_stats_vm_v_active_count, 4, &(memActive), &len, NULL, 0); memActive *= pageSizeKb; fpl->memActive = memActive; len = sizeof(memWire); sysctl(MIB_vm_stats_vm_v_wire_count, 4, &(memWire), &len, NULL, 0); memWire *= pageSizeKb; fpl->memWire = memWire; len = sizeof(buffersMem); sysctl(MIB_vfs_bufspace, 2, &(buffersMem), &len, NULL, 0); buffersMem /= 1024; pl->buffersMem = buffersMem; len = sizeof(cachedMem); sysctl(MIB_vm_stats_vm_v_cache_count, 4, &(cachedMem), &len, NULL, 0); cachedMem *= pageSizeKb; pl->cachedMem = cachedMem; if (fpl->zfsArcEnabled) { len = sizeof(memZfsArc); sysctl(MIB_kstat_zfs_misc_arcstats_size, 5, &(memZfsArc), &len , NULL, 0); memZfsArc /= 1024; fpl->memZfsArc = memZfsArc; fpl->memWire -= fpl->memZfsArc; pl->cachedMem += fpl->memZfsArc; // maybe when we learn how to make custom memory meter // we could do custom arc breakdown? } pl->usedMem = fpl->memActive + fpl->memWire; //currently unused, same as with arc, custom meter perhaps //sysctl(MIB_vm_stats_vm_v_inactive_count, 4, &(fpl->memInactive), &len, NULL, 0); //sysctl(MIB_vm_stats_vm_v_free_count, 4, &(fpl->memFree), &len, NULL, 0); //pl->freeMem = fpl->memInactive + fpl->memFree; //pl->freeMem *= pageSizeKb; struct kvm_swap swap[16]; int nswap = kvm_getswapinfo(fpl->kd, swap, sizeof(swap)/sizeof(swap[0]), 0); pl->totalSwap = 0; pl->usedSwap = 0; for (int i = 0; i < nswap; i++) { pl->totalSwap += swap[i].ksw_total; pl->usedSwap += swap[i].ksw_used; } pl->totalSwap *= pageSizeKb; pl->usedSwap *= pageSizeKb; pl->sharedMem = 0; // currently unused } char* FreeBSDProcessList_readProcessName(kvm_t* kd, struct kinfo_proc* kproc, int* basenameEnd) { char** argv = kvm_getargv(kd, kproc, 0); if (!argv) { return xStrdup(kproc->ki_comm); } int len = 0; for (int i = 0; argv[i]; i++) { len += strlen(argv[i]) + 1; } char* comm = xMalloc(len); char* at = comm; *basenameEnd = 0; for (int i = 0; argv[i]; i++) { at = stpcpy(at, argv[i]); if (!*basenameEnd) { *basenameEnd = at - comm; } *at = ' '; at++; } at--; *at = '\0'; return comm; } char* FreeBSDProcessList_readJailName(struct kinfo_proc* kproc) { int jid; struct iovec jiov[6]; char* jname; char jnamebuf[MAXHOSTNAMELEN]; if (kproc->ki_jid != 0 ){ memset(jnamebuf, 0, sizeof(jnamebuf)); *(const void **)&jiov[0].iov_base = "jid"; jiov[0].iov_len = sizeof("jid"); jiov[1].iov_base = &kproc->ki_jid; jiov[1].iov_len = sizeof(kproc->ki_jid); *(const void **)&jiov[2].iov_base = "name"; jiov[2].iov_len = sizeof("name"); jiov[3].iov_base = jnamebuf; jiov[3].iov_len = sizeof(jnamebuf); *(const void **)&jiov[4].iov_base = "errmsg"; jiov[4].iov_len = sizeof("errmsg"); jiov[5].iov_base = jail_errmsg; jiov[5].iov_len = JAIL_ERRMSGLEN; jail_errmsg[0] = 0; jid = jail_get(jiov, 6, 0); if (jid < 0) { if (!jail_errmsg[0]) xSnprintf(jail_errmsg, JAIL_ERRMSGLEN, "jail_get: %s", strerror(errno)); return NULL; } else if (jid == kproc->ki_jid) { jname = xStrdup(jnamebuf); if (jname == NULL) strerror_r(errno, jail_errmsg, JAIL_ERRMSGLEN); return jname; } else { return NULL; } } else { jnamebuf[0]='-'; jnamebuf[1]='\0'; jname = xStrdup(jnamebuf); } return jname; } void ProcessList_goThroughEntries(ProcessList* this) { FreeBSDProcessList* fpl = (FreeBSDProcessList*) this; Settings* settings = this->settings; bool hideKernelThreads = settings->hideKernelThreads; bool hideUserlandThreads = settings->hideUserlandThreads; FreeBSDProcessList_scanMemoryInfo(this); FreeBSDProcessList_scanCPUTime(this); int cpus = this->cpuCount; int count = 0; struct kinfo_proc* kprocs = kvm_getprocs(fpl->kd, KERN_PROC_PROC, 0, &count); struct timeval tv; gettimeofday(&tv, NULL); for (int i = 0; i < count; i++) { struct kinfo_proc* kproc = &kprocs[i]; bool preExisting = false; bool isIdleProcess = false; struct tm date; Process* proc = ProcessList_getProcess(this, kproc->ki_pid, &preExisting, (Process_New) FreeBSDProcess_new); FreeBSDProcess* fp = (FreeBSDProcess*) proc; proc->show = ! ((hideKernelThreads && Process_isKernelThread(fp)) || (hideUserlandThreads && Process_isUserlandThread(proc))); if (!preExisting) { fp->jid = kproc->ki_jid; proc->pid = kproc->ki_pid; if ( ! ((kproc->ki_pid == 0) || (kproc->ki_pid == 1) ) && kproc->ki_flag & P_SYSTEM) fp->kernel = 1; else fp->kernel = 0; proc->ppid = kproc->ki_ppid; proc->tpgid = kproc->ki_tpgid; proc->tgid = kproc->ki_pid; proc->session = kproc->ki_sid; proc->tty_nr = kproc->ki_tdev; proc->pgrp = kproc->ki_pgid; proc->st_uid = kproc->ki_uid; proc->starttime_ctime = kproc->ki_start.tv_sec; proc->user = UsersTable_getRef(this->usersTable, proc->st_uid); ProcessList_add((ProcessList*)this, proc); proc->comm = FreeBSDProcessList_readProcessName(fpl->kd, kproc, &proc->basenameOffset); fp->jname = FreeBSDProcessList_readJailName(kproc); } else { if(fp->jid != kproc->ki_jid) { // process can enter jail anytime fp->jid = kproc->ki_jid; free(fp->jname); fp->jname = FreeBSDProcessList_readJailName(kproc); } if (proc->ppid != kproc->ki_ppid) { // if there are reapers in the system, process can get reparented anytime proc->ppid = kproc->ki_ppid; } if(proc->st_uid != kproc->ki_uid) { // some processes change users (eg. to lower privs) proc->st_uid = kproc->ki_uid; proc->user = UsersTable_getRef(this->usersTable, proc->st_uid); } if (settings->updateProcessNames) { free(proc->comm); proc->comm = FreeBSDProcessList_readProcessName(fpl->kd, kproc, &proc->basenameOffset); } } // from FreeBSD source /src/usr.bin/top/machine.c proc->m_size = kproc->ki_size / 1024 / pageSizeKb; proc->m_resident = kproc->ki_rssize; proc->percent_mem = (proc->m_resident * PAGE_SIZE_KB) / (double)(this->totalMem) * 100.0; proc->nlwp = kproc->ki_numthreads; proc->time = (kproc->ki_runtime + 5000) / 10000; proc->percent_cpu = 100.0 * ((double)kproc->ki_pctcpu / (double)kernelFScale); proc->percent_mem = 100.0 * (proc->m_resident * PAGE_SIZE_KB) / (double)(this->totalMem); if (proc->percent_cpu > 0.1) { // system idle process should own all CPU time left regardless of CPU count if ( strcmp("idle", kproc->ki_comm) == 0 ) { isIdleProcess = true; } } proc->priority = kproc->ki_pri.pri_level - PZERO; if (strcmp("intr", kproc->ki_comm) == 0 && kproc->ki_flag & P_SYSTEM) { proc->nice = 0; //@etosan: intr kernel process (not thread) has weird nice value } else if (kproc->ki_pri.pri_class == PRI_TIMESHARE) { proc->nice = kproc->ki_nice - NZERO; } else if (PRI_IS_REALTIME(kproc->ki_pri.pri_class)) { proc->nice = PRIO_MIN - 1 - (PRI_MAX_REALTIME - kproc->ki_pri.pri_level); } else { proc->nice = PRIO_MAX + 1 + kproc->ki_pri.pri_level - PRI_MIN_IDLE; } switch (kproc->ki_stat) { case SIDL: proc->state = 'I'; break; case SRUN: proc->state = 'R'; break; case SSLEEP: proc->state = 'S'; break; case SSTOP: proc->state = 'T'; break; case SZOMB: proc->state = 'Z'; break; case SWAIT: proc->state = 'D'; break; case SLOCK: proc->state = 'L'; break; default: proc->state = '?'; } if (Process_isKernelThread(fp)) { this->kernelThreads++; } (void) localtime_r((time_t*) &proc->starttime_ctime, &date); strftime(proc->starttime_show, 7, ((proc->starttime_ctime > tv.tv_sec - 86400) ? "%R " : "%b%d "), &date); this->totalTasks++; if (proc->state == 'R') this->runningTasks++; proc->updated = true; } }