/* htop - NetBSDMachine.c (C) 2014 Hisham H. Muhammad (C) 2015 Michael McConville (C) 2021 Santhosh Raju (C) 2021 htop dev team Released under the GNU GPLv2+, see the COPYING file in the source distribution for its full text. */ #include "config.h" // IWYU pragma: keep #include "netbsd/NetBSDMachine.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "CRT.h" #include "Machine.h" #include "Macros.h" #include "Object.h" #include "Settings.h" #include "XUtils.h" static const struct { const char* name; long int scale; } freqSysctls[] = { { "machdep.est.frequency.current", 1 }, { "machdep.powernow.frequency.current", 1 }, { "machdep.intrepid.frequency.current", 1 }, { "machdep.loongson.frequency.current", 1 }, { "machdep.cpu.frequency.current", 1 }, { "machdep.frequency.current", 1 }, { "machdep.tsc_freq", 1000000 }, }; static void NetBSDMachine_updateCPUcount(NetBSDMachine* this) { Machine* super = &this->super; // Definitions for sysctl(3), cf. https://nxr.netbsd.org/xref/src/sys/sys/sysctl.h#813 const int mib_ncpu_existing[] = { CTL_HW, HW_NCPU }; // Number of existing CPUs const int mib_ncpu_online[] = { CTL_HW, HW_NCPUONLINE }; // Number of online/active CPUs int r; unsigned int value; size_t size; bool change = false; // Query the number of active/online CPUs. size = sizeof(value); r = sysctl(mib_ncpu_online, 2, &value, &size, NULL, 0); if (r < 0 || value < 1) { value = 1; } if (value != super->activeCPUs) { super->activeCPUs = value; change = true; } // Query the total number of CPUs. size = sizeof(value); r = sysctl(mib_ncpu_existing, 2, &value, &size, NULL, 0); if (r < 0 || value < 1) { value = super->activeCPUs; } if (value != super->existingCPUs) { this->cpuData = xReallocArray(this->cpuData, value + 1, sizeof(CPUData)); super->existingCPUs = value; change = true; } // Reset CPU stats when number of online/existing CPU cores changed if (change) { CPUData* dAvg = &this->cpuData[0]; memset(dAvg, '\0', sizeof(CPUData)); dAvg->totalTime = 1; dAvg->totalPeriod = 1; for (unsigned int i = 0; i < super->existingCPUs; i++) { CPUData* d = &this->cpuData[i + 1]; memset(d, '\0', sizeof(CPUData)); d->totalTime = 1; d->totalPeriod = 1; } } } Machine* Machine_new(UsersTable* usersTable, uid_t userId) { const int fmib[] = { CTL_KERN, KERN_FSCALE }; size_t size; char errbuf[_POSIX2_LINE_MAX]; NetBSDMachine* this = xCalloc(1, sizeof(NetBSDMachine)); Machine* super = &this->super; Machine_init(super, usersTable, userId); NetBSDMachine_updateCPUcount(this); size = sizeof(this->fscale); if (sysctl(fmib, 2, &this->fscale, &size, NULL, 0) < 0 || this->fscale <= 0) { CRT_fatalError("fscale sysctl call failed"); } if ((this->pageSize = sysconf(_SC_PAGESIZE)) == -1) CRT_fatalError("pagesize sysconf call failed"); this->pageSizeKB = this->pageSize / ONE_K; this->kd = kvm_openfiles(NULL, NULL, NULL, KVM_NO_FILES, errbuf); if (this->kd == NULL) { CRT_fatalError("kvm_openfiles() failed"); } return super; } void Machine_delete(Machine* super) { NetBSDMachine* this = (NetBSDMachine*) super; Machine_done(super); if (this->kd) { kvm_close(this->kd); } free(this->cpuData); free(this); } static void NetBSDMachine_scanMemoryInfo(NetBSDMachine* this) { Machine* super = &this->super; static int uvmexp_mib[] = {CTL_VM, VM_UVMEXP2}; struct uvmexp_sysctl uvmexp; size_t size_uvmexp = sizeof(uvmexp); if (sysctl(uvmexp_mib, 2, &uvmexp, &size_uvmexp, NULL, 0) < 0) { CRT_fatalError("uvmexp sysctl call failed"); } super->totalMem = uvmexp.npages * this->pageSizeKB; super->buffersMem = 0; super->cachedMem = (uvmexp.filepages + uvmexp.execpages) * this->pageSizeKB; super->usedMem = (uvmexp.active + uvmexp.wired) * this->pageSizeKB; super->totalSwap = uvmexp.swpages * this->pageSizeKB; super->usedSwap = uvmexp.swpginuse * this->pageSizeKB; } static void getKernelCPUTimes(int cpuId, u_int64_t* times) { const int mib[] = { CTL_KERN, KERN_CP_TIME, cpuId }; size_t length = sizeof(*times) * CPUSTATES; if (sysctl(mib, 3, times, &length, NULL, 0) == -1 || length != sizeof(*times) * CPUSTATES) { CRT_fatalError("sysctl kern.cp_time2 failed"); } } static void kernelCPUTimesToHtop(const u_int64_t* times, CPUData* cpu) { unsigned long long totalTime = 0; for (int i = 0; i < CPUSTATES; i++) { totalTime += times[i]; } unsigned long long sysAllTime = times[CP_INTR] + times[CP_SYS]; cpu->totalPeriod = saturatingSub(totalTime, cpu->totalTime); cpu->userPeriod = saturatingSub(times[CP_USER], cpu->userTime); cpu->nicePeriod = saturatingSub(times[CP_NICE], cpu->niceTime); cpu->sysPeriod = saturatingSub(times[CP_SYS], cpu->sysTime); cpu->sysAllPeriod = saturatingSub(sysAllTime, cpu->sysAllTime); cpu->intrPeriod = saturatingSub(times[CP_INTR], cpu->intrTime); cpu->idlePeriod = saturatingSub(times[CP_IDLE], cpu->idleTime); cpu->totalTime = totalTime; cpu->userTime = times[CP_USER]; cpu->niceTime = times[CP_NICE]; cpu->sysTime = times[CP_SYS]; cpu->sysAllTime = sysAllTime; cpu->intrTime = times[CP_INTR]; cpu->idleTime = times[CP_IDLE]; } static void NetBSDMachine_scanCPUTime(NetBSDMachine* this) { const Machine* super = &this->super; u_int64_t kernelTimes[CPUSTATES] = {0}; u_int64_t avg[CPUSTATES] = {0}; for (unsigned int i = 0; i < super->existingCPUs; i++) { getKernelCPUTimes(i, kernelTimes); CPUData* cpu = &this->cpuData[i + 1]; kernelCPUTimesToHtop(kernelTimes, cpu); avg[CP_USER] += cpu->userTime; avg[CP_NICE] += cpu->niceTime; avg[CP_SYS] += cpu->sysTime; avg[CP_INTR] += cpu->intrTime; avg[CP_IDLE] += cpu->idleTime; } for (int i = 0; i < CPUSTATES; i++) { avg[i] /= super->activeCPUs; } kernelCPUTimesToHtop(avg, &this->cpuData[0]); } static void NetBSDMachine_scanCPUFrequency(NetBSDMachine* this) { const Machine* super = &this->super; unsigned int cpus = super->existingCPUs; bool match = false; char name[64]; long int freq = 0; size_t freqSize; for (unsigned int i = 0; i < cpus; i++) { this->cpuData[i + 1].frequency = NAN; } /* newer hardware supports per-core frequency, for e.g. ARM big.LITTLE */ for (unsigned int i = 0; i < cpus; i++) { xSnprintf(name, sizeof(name), "machdep.cpufreq.cpu%u.current", i); freqSize = sizeof(freq); if (sysctlbyname(name, &freq, &freqSize, NULL, 0) != -1) { this->cpuData[i + 1].frequency = freq; /* already in MHz */ match = true; } } if (match) { return; } /* * Iterate through legacy sysctl nodes for single-core frequency until * we find a match... */ for (size_t i = 0; i < ARRAYSIZE(freqSysctls); i++) { freqSize = sizeof(freq); if (sysctlbyname(freqSysctls[i].name, &freq, &freqSize, NULL, 0) != -1) { freq /= freqSysctls[i].scale; /* scale to MHz */ match = true; break; } } if (match) { for (unsigned int i = 0; i < cpus; i++) { this->cpuData[i + 1].frequency = freq; } } } void Machine_scan(Machine* super) { NetBSDMachine* this = (NetBSDMachine*) super; NetBSDMachine_scanMemoryInfo(this); NetBSDMachine_scanCPUTime(this); if (super->settings->showCPUFrequency) { NetBSDMachine_scanCPUFrequency(this); } } bool Machine_isCPUonline(const Machine* host, unsigned int id) { assert(id < host->existingCPUs); (void)host; (void)id; // TODO: Support detecting online / offline CPUs. return true; }