/* htop - FreeBSDMachine.c (C) 2014 Hisham H. Muhammad Released under the GNU GPLv2+, see the COPYING file in the source distribution for its full text. */ #include "config.h" // IWYU pragma: keep #include "freebsd/FreeBSDMachine.h" #include #include #include #include #include #include #include #include // needs to be included before for MAXPATHLEN #include #include #include #include #include #include #include #include #include #include "CRT.h" #include "Compat.h" #include "Macros.h" #include "Object.h" #include "Scheduling.h" #include "Settings.h" #include "XUtils.h" #include "generic/openzfs_sysctl.h" #include "zfs/ZfsArcStats.h" static int MIB_hw_physmem[2]; static int MIB_vm_stats_vm_v_page_count[4]; static int MIB_vm_stats_vm_v_wire_count[4]; static int MIB_vm_stats_vm_v_active_count[4]; static int MIB_vm_stats_vm_v_cache_count[4]; static int MIB_vm_stats_vm_v_inactive_count[4]; static int MIB_vm_stats_vm_v_free_count[4]; static int MIB_vm_vmtotal[2]; static int MIB_vfs_bufspace[2]; static int MIB_kern_cp_time[2]; static int MIB_kern_cp_times[2]; Machine* Machine_new(UsersTable* usersTable, uid_t userId) { FreeBSDMachine* this = xCalloc(1, sizeof(FreeBSDMachine)); Machine* super = &this->super; char errbuf[_POSIX2_LINE_MAX]; size_t len; Machine_init(super, usersTable, userId); // physical memory in system: hw.physmem // physical page size: hw.pagesize // usable pagesize : vm.stats.vm.v_page_size len = 2; sysctlnametomib("hw.physmem", MIB_hw_physmem, &len); len = sizeof(this->pageSize); if (sysctlbyname("vm.stats.vm.v_page_size", &this->pageSize, &len, NULL, 0) == -1) CRT_fatalError("Cannot get pagesize by sysctl"); this->pageSizeKb = this->pageSize / ONE_K; // usable page count vm.stats.vm.v_page_count // actually usable memory : vm.stats.vm.v_page_count * vm.stats.vm.v_page_size len = 4; sysctlnametomib("vm.stats.vm.v_page_count", MIB_vm_stats_vm_v_page_count, &len); len = 4; sysctlnametomib("vm.stats.vm.v_wire_count", MIB_vm_stats_vm_v_wire_count, &len); len = 4; sysctlnametomib("vm.stats.vm.v_active_count", MIB_vm_stats_vm_v_active_count, &len); len = 4; sysctlnametomib("vm.stats.vm.v_cache_count", MIB_vm_stats_vm_v_cache_count, &len); len = 4; sysctlnametomib("vm.stats.vm.v_inactive_count", MIB_vm_stats_vm_v_inactive_count, &len); len = 4; sysctlnametomib("vm.stats.vm.v_free_count", MIB_vm_stats_vm_v_free_count, &len); len = 2; sysctlnametomib("vm.vmtotal", MIB_vm_vmtotal, &len); len = 2; sysctlnametomib("vfs.bufspace", MIB_vfs_bufspace, &len); openzfs_sysctl_init(&this->zfs); openzfs_sysctl_updateArcStats(&this->zfs); int smp = 0; len = sizeof(smp); if (sysctlbyname("kern.smp.active", &smp, &len, NULL, 0) != 0 || len != sizeof(smp)) { smp = 0; } int cpus = 1; len = sizeof(cpus); if (smp) { int err = sysctlbyname("kern.smp.cpus", &cpus, &len, NULL, 0); if (err) { cpus = 1; } } else { cpus = 1; } size_t sizeof_cp_time_array = sizeof(unsigned long) * CPUSTATES; len = 2; sysctlnametomib("kern.cp_time", MIB_kern_cp_time, &len); this->cp_time_o = xCalloc(CPUSTATES, sizeof(unsigned long)); this->cp_time_n = xCalloc(CPUSTATES, sizeof(unsigned long)); len = sizeof_cp_time_array; // fetch initial single (or average) CPU clicks from kernel sysctl(MIB_kern_cp_time, 2, this->cp_time_o, &len, NULL, 0); // on smp box, fetch rest of initial CPU's clicks if (cpus > 1) { len = 2; sysctlnametomib("kern.cp_times", MIB_kern_cp_times, &len); this->cp_times_o = xCalloc(cpus, sizeof_cp_time_array); this->cp_times_n = xCalloc(cpus, sizeof_cp_time_array); len = cpus * sizeof_cp_time_array; sysctl(MIB_kern_cp_times, 2, this->cp_times_o, &len, NULL, 0); } super->existingCPUs = MAXIMUM(cpus, 1); // TODO: support offline CPUs and hot swapping super->activeCPUs = super->existingCPUs; if (cpus == 1 ) { this->cpus = xRealloc(this->cpus, sizeof(CPUData)); } else { // on smp we need CPUs + 1 to store averages too (as kernel kindly provides that as well) this->cpus = xRealloc(this->cpus, (super->existingCPUs + 1) * sizeof(CPUData)); } len = sizeof(this->kernelFScale); if (sysctlbyname("kern.fscale", &this->kernelFScale, &len, NULL, 0) == -1 || this->kernelFScale <= 0) { //sane default for kernel provided CPU percentage scaling, at least on x86 machines, in case this sysctl call failed this->kernelFScale = 2048; } this->kd = kvm_openfiles(NULL, "/dev/null", NULL, 0, errbuf); if (this->kd == NULL) { CRT_fatalError("kvm_openfiles() failed"); } return super; } void Machine_delete(Machine* super) { FreeBSDMachine* this = (FreeBSDMachine*) super; Machine_done(super); if (this->kd) { kvm_close(this->kd); } free(this->cp_time_o); free(this->cp_time_n); free(this->cp_times_o); free(this->cp_times_n); free(this->cpus); free(this); } static inline void FreeBSDMachine_scanCPU(Machine* super) { const FreeBSDMachine* this = (FreeBSDMachine*) super; unsigned int cpus = super->existingCPUs; // actual CPU count unsigned int maxcpu = cpus; // max iteration (in case we have average + smp) int cp_times_offset; assert(cpus > 0); size_t sizeof_cp_time_array; unsigned long* cp_time_n; // old clicks state unsigned long* cp_time_o; // current clicks state unsigned long cp_time_d[CPUSTATES]; double cp_time_p[CPUSTATES]; // get averages or single CPU clicks sizeof_cp_time_array = sizeof(unsigned long) * CPUSTATES; sysctl(MIB_kern_cp_time, 2, this->cp_time_n, &sizeof_cp_time_array, NULL, 0); // get rest of CPUs if (cpus > 1) { // on smp systems FreeBSD kernel concats all CPU states into one long array in // kern.cp_times sysctl OID // we store averages in this->cpus[0], and actual cores after that maxcpu = cpus + 1; sizeof_cp_time_array = cpus * sizeof(unsigned long) * CPUSTATES; sysctl(MIB_kern_cp_times, 2, this->cp_times_n, &sizeof_cp_time_array, NULL, 0); } for (unsigned int i = 0; i < maxcpu; i++) { if (cpus == 1) { // single CPU box cp_time_n = this->cp_time_n; cp_time_o = this->cp_time_o; } else { if (i == 0 ) { // average cp_time_n = this->cp_time_n; cp_time_o = this->cp_time_o; } else { // specific smp cores cp_times_offset = i - 1; cp_time_n = this->cp_times_n + (cp_times_offset * CPUSTATES); cp_time_o = this->cp_times_o + (cp_times_offset * CPUSTATES); } } // diff old vs new unsigned long long total_o = 0; unsigned long long total_n = 0; unsigned long long total_d = 0; for (int s = 0; s < CPUSTATES; s++) { cp_time_d[s] = cp_time_n[s] - cp_time_o[s]; total_o += cp_time_o[s]; total_n += cp_time_n[s]; } // totals total_d = total_n - total_o; if (total_d < 1 ) { total_d = 1; } // save current state as old and calc percentages for (int s = 0; s < CPUSTATES; ++s) { cp_time_o[s] = cp_time_n[s]; cp_time_p[s] = ((double)cp_time_d[s]) / ((double)total_d) * 100; } CPUData* cpuData = &(this->cpus[i]); cpuData->userPercent = cp_time_p[CP_USER]; cpuData->nicePercent = cp_time_p[CP_NICE]; cpuData->systemPercent = cp_time_p[CP_SYS]; cpuData->irqPercent = cp_time_p[CP_INTR]; cpuData->systemAllPercent = cp_time_p[CP_SYS] + cp_time_p[CP_INTR]; // this one is not really used //cpuData->idlePercent = cp_time_p[CP_IDLE]; cpuData->temperature = NAN; cpuData->frequency = NAN; const int coreId = (cpus == 1) ? 0 : ((int)i - 1); if (coreId < 0) continue; // TODO: test with hyperthreading and multi-cpu systems if (super->settings->showCPUTemperature) { int temperature; size_t len = sizeof(temperature); char mibBuffer[32]; xSnprintf(mibBuffer, sizeof(mibBuffer), "dev.cpu.%d.temperature", coreId); int r = sysctlbyname(mibBuffer, &temperature, &len, NULL, 0); if (r == 0) cpuData->temperature = (double)(temperature - 2732) / 10.0; // convert from deci-Kelvin to Celsius } // TODO: test with hyperthreading and multi-cpu systems if (super->settings->showCPUFrequency) { int frequency; size_t len = sizeof(frequency); char mibBuffer[32]; xSnprintf(mibBuffer, sizeof(mibBuffer), "dev.cpu.%d.freq", coreId); int r = sysctlbyname(mibBuffer, &frequency, &len, NULL, 0); if (r == 0) cpuData->frequency = frequency; // keep in MHz } } // calculate max temperature and avg frequency for average meter and // propagate frequency to all cores if only supplied for CPU 0 if (cpus > 1) { if (super->settings->showCPUTemperature) { double maxTemp = -HUGE_VAL; for (unsigned int i = 1; i < maxcpu; i++) { if (isgreater(this->cpus[i].temperature, maxTemp)) { maxTemp = this->cpus[i].temperature; this->cpus[0].temperature = maxTemp; } } } if (super->settings->showCPUFrequency) { const double coreZeroFreq = this->cpus[1].frequency; double freqSum = coreZeroFreq; if (isNonnegative(coreZeroFreq)) { for (unsigned int i = 2; i < maxcpu; i++) { if (!isNonnegative(this->cpus[i].frequency)) this->cpus[i].frequency = coreZeroFreq; freqSum += this->cpus[i].frequency; } this->cpus[0].frequency = freqSum / (maxcpu - 1); } } } } static void FreeBSDMachine_scanMemoryInfo(Machine* super) { FreeBSDMachine* this = (FreeBSDMachine*) super; // @etosan: // memory counter relationships seem to be these: // total = active + wired + inactive + cache + free // htop_used (unavail to anybody) = active + wired // htop_cache (for cache meter) = buffers + cache // user_free (avail to procs) = buffers + inactive + cache + free // // with ZFS ARC situation becomes bit muddled, as ARC behaves like "user_free" // and belongs into cache, but is reported as wired by kernel // // htop_used = active + (wired - arc) // htop_cache = buffers + cache + arc u_long totalMem; u_int memActive, memWire, cachedMem; long buffersMem; size_t len; struct vmtotal vmtotal; //disabled for now, as it is always smaller than phycal amount of memory... //...to avoid "where is my memory?" questions //sysctl(MIB_vm_stats_vm_v_page_count, 4, &(super->totalMem), &len, NULL, 0); //super->totalMem *= this->pageSizeKb; len = sizeof(totalMem); sysctl(MIB_hw_physmem, 2, &(totalMem), &len, NULL, 0); totalMem /= 1024; super->totalMem = totalMem; len = sizeof(memActive); sysctl(MIB_vm_stats_vm_v_active_count, 4, &(memActive), &len, NULL, 0); memActive *= this->pageSizeKb; this->memActive = memActive; len = sizeof(memWire); sysctl(MIB_vm_stats_vm_v_wire_count, 4, &(memWire), &len, NULL, 0); memWire *= this->pageSizeKb; this->memWire = memWire; len = sizeof(buffersMem); sysctl(MIB_vfs_bufspace, 2, &(buffersMem), &len, NULL, 0); buffersMem /= 1024; super->buffersMem = buffersMem; len = sizeof(cachedMem); sysctl(MIB_vm_stats_vm_v_cache_count, 4, &(cachedMem), &len, NULL, 0); cachedMem *= this->pageSizeKb; super->cachedMem = cachedMem; len = sizeof(vmtotal); sysctl(MIB_vm_vmtotal, 2, &(vmtotal), &len, NULL, 0); super->sharedMem = vmtotal.t_rmshr * this->pageSizeKb; super->usedMem = this->memActive + this->memWire; struct kvm_swap swap[16]; int nswap = kvm_getswapinfo(this->kd, swap, ARRAYSIZE(swap), 0); super->totalSwap = 0; super->usedSwap = 0; for (int i = 0; i < nswap; i++) { super->totalSwap += swap[i].ksw_total; super->usedSwap += swap[i].ksw_used; } super->totalSwap *= this->pageSizeKb; super->usedSwap *= this->pageSizeKb; } void Machine_scan(Machine* super) { FreeBSDMachine* this = (FreeBSDMachine*) super; openzfs_sysctl_updateArcStats(&this->zfs); FreeBSDMachine_scanMemoryInfo(super); FreeBSDMachine_scanCPU(super); } bool Machine_isCPUonline(const Machine* host, unsigned int id) { assert(id < host->existingCPUs); // TODO: support offline CPUs and hot swapping (void) host; (void) id; return true; }