/* htop - DragonFlyBSDProcessList.c (C) 2014 Hisham H. Muhammad (C) 2017 Diederik de Groot Released under the GNU GPLv2, see the COPYING file in the source distribution for its full text. */ #include "dragonflybsd/DragonFlyBSDProcessList.h" #include #include #include #include #include #include #include #include #include #include #include "CRT.h" #include "Macros.h" #include "dragonflybsd/DragonFlyBSDProcess.h" static int MIB_hw_physmem[2]; static int MIB_vm_stats_vm_v_page_count[4]; static int pageSize; static int pageSizeKb; static int MIB_vm_stats_vm_v_wire_count[4]; static int MIB_vm_stats_vm_v_active_count[4]; static int MIB_vm_stats_vm_v_cache_count[4]; static int MIB_vm_stats_vm_v_inactive_count[4]; static int MIB_vm_stats_vm_v_free_count[4]; static int MIB_vfs_bufspace[2]; static int MIB_kern_cp_time[2]; static int MIB_kern_cp_times[2]; static int kernelFScale; ProcessList* ProcessList_new(UsersTable* usersTable, Hashtable* dynamicMeters, Hashtable* dynamicColumns, Hashtable* pidMatchList, uid_t userId) { size_t len; char errbuf[_POSIX2_LINE_MAX]; DragonFlyBSDProcessList* dfpl = xCalloc(1, sizeof(DragonFlyBSDProcessList)); ProcessList* pl = (ProcessList*) dfpl; ProcessList_init(pl, Class(DragonFlyBSDProcess), usersTable, dynamicMeters, dynamicColumns, pidMatchList, userId); // physical memory in system: hw.physmem // physical page size: hw.pagesize // usable pagesize : vm.stats.vm.v_page_size len = 2; sysctlnametomib("hw.physmem", MIB_hw_physmem, &len); len = sizeof(pageSize); if (sysctlbyname("vm.stats.vm.v_page_size", &pageSize, &len, NULL, 0) == -1) CRT_fatalError("Cannot get pagesize by sysctl"); pageSizeKb = pageSize / ONE_K; // usable page count vm.stats.vm.v_page_count // actually usable memory : vm.stats.vm.v_page_count * vm.stats.vm.v_page_size len = 4; sysctlnametomib("vm.stats.vm.v_page_count", MIB_vm_stats_vm_v_page_count, &len); len = 4; sysctlnametomib("vm.stats.vm.v_wire_count", MIB_vm_stats_vm_v_wire_count, &len); len = 4; sysctlnametomib("vm.stats.vm.v_active_count", MIB_vm_stats_vm_v_active_count, &len); len = 4; sysctlnametomib("vm.stats.vm.v_cache_count", MIB_vm_stats_vm_v_cache_count, &len); len = 4; sysctlnametomib("vm.stats.vm.v_inactive_count", MIB_vm_stats_vm_v_inactive_count, &len); len = 4; sysctlnametomib("vm.stats.vm.v_free_count", MIB_vm_stats_vm_v_free_count, &len); len = 2; sysctlnametomib("vfs.bufspace", MIB_vfs_bufspace, &len); int cpus = 1; len = sizeof(cpus); if (sysctlbyname("hw.ncpu", &cpus, &len, NULL, 0) != 0) { cpus = 1; } size_t sizeof_cp_time_array = sizeof(unsigned long) * CPUSTATES; len = 2; sysctlnametomib("kern.cp_time", MIB_kern_cp_time, &len); dfpl->cp_time_o = xCalloc(cpus, sizeof_cp_time_array); dfpl->cp_time_n = xCalloc(cpus, sizeof_cp_time_array); len = sizeof_cp_time_array; // fetch initial single (or average) CPU clicks from kernel sysctl(MIB_kern_cp_time, 2, dfpl->cp_time_o, &len, NULL, 0); // on smp box, fetch rest of initial CPU's clicks if (cpus > 1) { len = 2; sysctlnametomib("kern.cp_times", MIB_kern_cp_times, &len); dfpl->cp_times_o = xCalloc(cpus, sizeof_cp_time_array); dfpl->cp_times_n = xCalloc(cpus, sizeof_cp_time_array); len = cpus * sizeof_cp_time_array; sysctl(MIB_kern_cp_times, 2, dfpl->cp_times_o, &len, NULL, 0); } pl->existingCPUs = MAXIMUM(cpus, 1); // TODO: support offline CPUs and hot swapping pl->activeCPUs = pl->existingCPUs; if (cpus == 1 ) { dfpl->cpus = xRealloc(dfpl->cpus, sizeof(CPUData)); } else { // on smp we need CPUs + 1 to store averages too (as kernel kindly provides that as well) dfpl->cpus = xRealloc(dfpl->cpus, (pl->existingCPUs + 1) * sizeof(CPUData)); } len = sizeof(kernelFScale); if (sysctlbyname("kern.fscale", &kernelFScale, &len, NULL, 0) == -1) { //sane default for kernel provided CPU percentage scaling, at least on x86 machines, in case this sysctl call failed kernelFScale = 2048; } dfpl->kd = kvm_openfiles(NULL, "/dev/null", NULL, 0, errbuf); if (dfpl->kd == NULL) { CRT_fatalError("kvm_openfiles() failed"); } return pl; } void ProcessList_delete(ProcessList* this) { const DragonFlyBSDProcessList* dfpl = (DragonFlyBSDProcessList*) this; if (dfpl->kd) { kvm_close(dfpl->kd); } if (dfpl->jails) { Hashtable_delete(dfpl->jails); } free(dfpl->cp_time_o); free(dfpl->cp_time_n); free(dfpl->cp_times_o); free(dfpl->cp_times_n); free(dfpl->cpus); ProcessList_done(this); free(this); } static inline void DragonFlyBSDProcessList_scanCPUTime(ProcessList* pl) { const DragonFlyBSDProcessList* dfpl = (DragonFlyBSDProcessList*) pl; unsigned int cpus = pl->existingCPUs; // actual CPU count unsigned int maxcpu = cpus; // max iteration (in case we have average + smp) int cp_times_offset; assert(cpus > 0); size_t sizeof_cp_time_array; unsigned long* cp_time_n; // old clicks state unsigned long* cp_time_o; // current clicks state unsigned long cp_time_d[CPUSTATES]; double cp_time_p[CPUSTATES]; // get averages or single CPU clicks sizeof_cp_time_array = sizeof(unsigned long) * CPUSTATES; sysctl(MIB_kern_cp_time, 2, dfpl->cp_time_n, &sizeof_cp_time_array, NULL, 0); // get rest of CPUs if (cpus > 1) { // on smp systems DragonFlyBSD kernel concats all CPU states into one long array in // kern.cp_times sysctl OID // we store averages in dfpl->cpus[0], and actual cores after that maxcpu = cpus + 1; sizeof_cp_time_array = cpus * sizeof(unsigned long) * CPUSTATES; sysctl(MIB_kern_cp_times, 2, dfpl->cp_times_n, &sizeof_cp_time_array, NULL, 0); } for (unsigned int i = 0; i < maxcpu; i++) { if (cpus == 1) { // single CPU box cp_time_n = dfpl->cp_time_n; cp_time_o = dfpl->cp_time_o; } else { if (i == 0 ) { // average cp_time_n = dfpl->cp_time_n; cp_time_o = dfpl->cp_time_o; } else { // specific smp cores cp_times_offset = i - 1; cp_time_n = dfpl->cp_times_n + (cp_times_offset * CPUSTATES); cp_time_o = dfpl->cp_times_o + (cp_times_offset * CPUSTATES); } } // diff old vs new unsigned long long total_o = 0; unsigned long long total_n = 0; unsigned long long total_d = 0; for (int s = 0; s < CPUSTATES; s++) { cp_time_d[s] = cp_time_n[s] - cp_time_o[s]; total_o += cp_time_o[s]; total_n += cp_time_n[s]; } // totals total_d = total_n - total_o; if (total_d < 1 ) { total_d = 1; } // save current state as old and calc percentages for (int s = 0; s < CPUSTATES; ++s) { cp_time_o[s] = cp_time_n[s]; cp_time_p[s] = ((double)cp_time_d[s]) / ((double)total_d) * 100; } CPUData* cpuData = &(dfpl->cpus[i]); cpuData->userPercent = cp_time_p[CP_USER]; cpuData->nicePercent = cp_time_p[CP_NICE]; cpuData->systemPercent = cp_time_p[CP_SYS]; cpuData->irqPercent = cp_time_p[CP_INTR]; cpuData->systemAllPercent = cp_time_p[CP_SYS] + cp_time_p[CP_INTR]; // this one is not really used, but we store it anyway cpuData->idlePercent = cp_time_p[CP_IDLE]; } } static inline void DragonFlyBSDProcessList_scanMemoryInfo(ProcessList* pl) { DragonFlyBSDProcessList* dfpl = (DragonFlyBSDProcessList*) pl; // @etosan: // memory counter relationships seem to be these: // total = active + wired + inactive + cache + free // htop_used (unavail to anybody) = active + wired // htop_cache (for cache meter) = buffers + cache // user_free (avail to procs) = buffers + inactive + cache + free size_t len = sizeof(pl->totalMem); //disabled for now, as it is always smaller than phycal amount of memory... //...to avoid "where is my memory?" questions //sysctl(MIB_vm_stats_vm_v_page_count, 4, &(pl->totalMem), &len, NULL, 0); //pl->totalMem *= pageSizeKb; sysctl(MIB_hw_physmem, 2, &(pl->totalMem), &len, NULL, 0); pl->totalMem /= 1024; sysctl(MIB_vm_stats_vm_v_active_count, 4, &(dfpl->memActive), &len, NULL, 0); dfpl->memActive *= pageSizeKb; sysctl(MIB_vm_stats_vm_v_wire_count, 4, &(dfpl->memWire), &len, NULL, 0); dfpl->memWire *= pageSizeKb; sysctl(MIB_vfs_bufspace, 2, &(pl->buffersMem), &len, NULL, 0); pl->buffersMem /= 1024; sysctl(MIB_vm_stats_vm_v_cache_count, 4, &(pl->cachedMem), &len, NULL, 0); pl->cachedMem *= pageSizeKb; pl->usedMem = dfpl->memActive + dfpl->memWire; struct kvm_swap swap[16]; int nswap = kvm_getswapinfo(dfpl->kd, swap, ARRAYSIZE(swap), 0); pl->totalSwap = 0; pl->usedSwap = 0; for (int i = 0; i < nswap; i++) { pl->totalSwap += swap[i].ksw_total; pl->usedSwap += swap[i].ksw_used; } pl->totalSwap *= pageSizeKb; pl->usedSwap *= pageSizeKb; } //static void DragonFlyBSDProcessList_updateExe(const struct kinfo_proc* kproc, Process* proc) { // const int mib[] = { CTL_KERN, KERN_PROC, KERN_PROC_PATHNAME, kproc->kp_pid }; // char buffer[2048]; // size_t size = sizeof(buffer); // if (sysctl(mib, 4, buffer, &size, NULL, 0) != 0) { // Process_updateExe(proc, NULL); // return; // } // // /* Kernel threads return an empty buffer */ // if (buffer[0] == '\0') { // Process_updateExe(proc, NULL); // return; // } // // Process_updateExe(proc, buffer); //} static void DragonFlyBSDProcessList_updateExe(const struct kinfo_proc* kproc, Process* proc) { if (Process_isKernelThread(proc)) return; char path[32]; xSnprintf(path, sizeof(path), "/proc/%d/file", kproc->kp_pid); char target[PATH_MAX]; ssize_t ret = readlink(path, target, sizeof(target) - 1); if (ret <= 0) return; target[ret] = '\0'; Process_updateExe(proc, target); } static void DragonFlyBSDProcessList_updateCwd(const struct kinfo_proc* kproc, Process* proc) { const int mib[] = { CTL_KERN, KERN_PROC, KERN_PROC_CWD, kproc->kp_pid }; char buffer[2048]; size_t size = sizeof(buffer); if (sysctl(mib, 4, buffer, &size, NULL, 0) != 0) { free(proc->procCwd); proc->procCwd = NULL; return; } /* Kernel threads return an empty buffer */ if (buffer[0] == '\0') { free(proc->procCwd); proc->procCwd = NULL; return; } free_and_xStrdup(&proc->procCwd, buffer); } static void DragonFlyBSDProcessList_updateProcessName(kvm_t* kd, const struct kinfo_proc* kproc, Process* proc) { Process_updateComm(proc, kproc->kp_comm); char** argv = kvm_getargv(kd, kproc, 0); if (!argv || !argv[0]) { Process_updateCmdline(proc, kproc->kp_comm, 0, strlen(kproc->kp_comm)); return; } size_t len = 0; for (int i = 0; argv[i]; i++) { len += strlen(argv[i]) + 1; } char* cmdline = xMalloc(len); char* at = cmdline; int end = 0; for (int i = 0; argv[i]; i++) { at = stpcpy(at, argv[i]); if (end == 0) { end = at - cmdline; } *at++ = ' '; } at--; *at = '\0'; Process_updateCmdline(proc, cmdline, 0, end); } static inline void DragonFlyBSDProcessList_scanJails(DragonFlyBSDProcessList* dfpl) { size_t len; char* jls; /* Jail list */ char* curpos; char* nextpos; if (sysctlbyname("jail.list", NULL, &len, NULL, 0) == -1) { CRT_fatalError("initial sysctlbyname / jail.list failed"); } retry: if (len == 0) return; jls = xMalloc(len); if (sysctlbyname("jail.list", jls, &len, NULL, 0) == -1) { if (errno == ENOMEM) { free(jls); goto retry; } CRT_fatalError("sysctlbyname / jail.list failed"); } if (dfpl->jails) { Hashtable_delete(dfpl->jails); } dfpl->jails = Hashtable_new(20, true); curpos = jls; while (curpos) { int jailid; char* str_hostname; nextpos = strchr(curpos, '\n'); if (nextpos) { *nextpos++ = 0; } jailid = atoi(strtok(curpos, " ")); str_hostname = strtok(NULL, " "); char* jname = (char*) (Hashtable_get(dfpl->jails, jailid)); if (jname == NULL) { jname = xStrdup(str_hostname); Hashtable_put(dfpl->jails, jailid, jname); } curpos = nextpos; } free(jls); } static char* DragonFlyBSDProcessList_readJailName(DragonFlyBSDProcessList* dfpl, int jailid) { char* hostname; char* jname; if (jailid != 0 && dfpl->jails && (hostname = (char*)Hashtable_get(dfpl->jails, jailid))) { jname = xStrdup(hostname); } else { jname = xStrdup("-"); } return jname; } void ProcessList_goThroughEntries(ProcessList* super, bool pauseProcessUpdate) { DragonFlyBSDProcessList* dfpl = (DragonFlyBSDProcessList*) super; const Settings* settings = super->settings; bool hideKernelThreads = settings->hideKernelThreads; bool hideUserlandThreads = settings->hideUserlandThreads; DragonFlyBSDProcessList_scanMemoryInfo(super); DragonFlyBSDProcessList_scanCPUTime(super); DragonFlyBSDProcessList_scanJails(dfpl); // in pause mode only gather global data for meters (CPU/memory/...) if (pauseProcessUpdate) { return; } int count = 0; const struct kinfo_proc* kprocs = kvm_getprocs(dfpl->kd, KERN_PROC_ALL | (!hideUserlandThreads ? KERN_PROC_FLAG_LWP : 0), 0, &count); for (int i = 0; i < count; i++) { const struct kinfo_proc* kproc = &kprocs[i]; bool preExisting = false; bool ATTR_UNUSED isIdleProcess = false; // note: dragonflybsd kernel processes all have the same pid, so we misuse the kernel thread address to give them a unique identifier Process* proc = ProcessList_getProcess(super, kproc->kp_ktaddr ? (pid_t)kproc->kp_ktaddr : kproc->kp_pid, &preExisting, DragonFlyBSDProcess_new); DragonFlyBSDProcess* dfp = (DragonFlyBSDProcess*) proc; if (!preExisting) { dfp->jid = kproc->kp_jailid; if (kproc->kp_ktaddr && kproc->kp_flags & P_SYSTEM) { // dfb kernel threads all have the same pid, so we misuse the kernel thread address to give them a unique identifier proc->pid = (pid_t)kproc->kp_ktaddr; proc->isKernelThread = true; } else { proc->pid = kproc->kp_pid; // process ID proc->isKernelThread = false; } proc->isUserlandThread = kproc->kp_nthreads > 1; proc->ppid = kproc->kp_ppid; // parent process id proc->tpgid = kproc->kp_tpgid; // tty process group id //proc->tgid = kproc->kp_lwp.kl_tid; // thread group id proc->tgid = kproc->kp_pid; // thread group id proc->pgrp = kproc->kp_pgid; // process group id proc->session = kproc->kp_sid; proc->st_uid = kproc->kp_uid; // user ID proc->processor = kproc->kp_lwp.kl_origcpu; proc->starttime_ctime = kproc->kp_start.tv_sec; Process_fillStarttimeBuffer(proc); proc->user = UsersTable_getRef(super->usersTable, proc->st_uid); proc->tty_nr = kproc->kp_tdev; // control terminal device number const char* name = (kproc->kp_tdev != NODEV) ? devname(kproc->kp_tdev, S_IFCHR) : NULL; if (!name) { free(proc->tty_name); proc->tty_name = NULL; } else { free_and_xStrdup(&proc->tty_name, name); } DragonFlyBSDProcessList_updateExe(kproc, proc); DragonFlyBSDProcessList_updateProcessName(dfpl->kd, kproc, proc); if (settings->flags & PROCESS_FLAG_CWD) { DragonFlyBSDProcessList_updateCwd(kproc, proc); } ProcessList_add(super, proc); dfp->jname = DragonFlyBSDProcessList_readJailName(dfpl, kproc->kp_jailid); } else { proc->processor = kproc->kp_lwp.kl_cpuid; if (dfp->jid != kproc->kp_jailid) { // process can enter jail anytime dfp->jid = kproc->kp_jailid; free(dfp->jname); dfp->jname = DragonFlyBSDProcessList_readJailName(dfpl, kproc->kp_jailid); } // if there are reapers in the system, process can get reparented anytime proc->ppid = kproc->kp_ppid; if (proc->st_uid != kproc->kp_uid) { // some processes change users (eg. to lower privs) proc->st_uid = kproc->kp_uid; proc->user = UsersTable_getRef(super->usersTable, proc->st_uid); } if (settings->updateProcessNames) { DragonFlyBSDProcessList_updateProcessName(dfpl->kd, kproc, proc); } } proc->m_virt = kproc->kp_vm_map_size / ONE_K; proc->m_resident = kproc->kp_vm_rssize * pageSizeKb; proc->nlwp = kproc->kp_nthreads; // number of lwp thread proc->time = (kproc->kp_swtime + 5000) / 10000; proc->percent_cpu = 100.0 * ((double)kproc->kp_lwp.kl_pctcpu / (double)kernelFScale); proc->percent_mem = 100.0 * proc->m_resident / (double)(super->totalMem); if (proc->percent_cpu > 0.1) { // system idle process should own all CPU time left regardless of CPU count if (String_eq("idle", kproc->kp_comm)) { isIdleProcess = true; } } if (kproc->kp_lwp.kl_pid != -1) proc->priority = kproc->kp_lwp.kl_prio; else proc->priority = -kproc->kp_lwp.kl_tdprio; switch(kproc->kp_lwp.kl_rtprio.type) { case RTP_PRIO_REALTIME: proc->nice = PRIO_MIN - 1 - RTP_PRIO_MAX + kproc->kp_lwp.kl_rtprio.prio; break; case RTP_PRIO_IDLE: proc->nice = PRIO_MAX + 1 + kproc->kp_lwp.kl_rtprio.prio; break; case RTP_PRIO_THREAD: proc->nice = PRIO_MIN - 1 - RTP_PRIO_MAX - kproc->kp_lwp.kl_rtprio.prio; break; default: proc->nice = kproc->kp_nice; break; } // would be nice if we could store multiple states in proc->state (as enum) and have writeField render them switch (kproc->kp_stat) { case SIDL: proc->state = 'I'; isIdleProcess = true; break; case SACTIVE: switch (kproc->kp_lwp.kl_stat) { case LSSLEEP: if (kproc->kp_lwp.kl_flags & LWP_SINTR) // interruptible wait short/long if (kproc->kp_lwp.kl_slptime >= MAXSLP) { proc->state = 'I'; isIdleProcess = true; } else { proc->state = 'S'; } else if (kproc->kp_lwp.kl_tdflags & TDF_SINTR) // interruptible lwkt wait proc->state = 'S'; else if (kproc->kp_paddr) // uninterruptible wait proc->state = 'D'; else // uninterruptible lwkt wait proc->state = 'B'; break; case LSRUN: if (kproc->kp_lwp.kl_stat == LSRUN) { if (!(kproc->kp_lwp.kl_tdflags & (TDF_RUNNING | TDF_RUNQ))) proc->state = 'Q'; else proc->state = 'R'; } break; case LSSTOP: proc->state = 'T'; break; default: proc->state = 'A'; break; } break; case SSTOP: proc->state = 'T'; break; case SZOMB: proc->state = 'Z'; break; case SCORE: proc->state = 'C'; break; default: proc->state = '?'; } if (kproc->kp_flags & P_SWAPPEDOUT) proc->state = 'W'; if (kproc->kp_flags & P_TRACED) proc->state = 'T'; if (kproc->kp_flags & P_JAILED) proc->state = 'J'; if (Process_isKernelThread(proc)) super->kernelThreads++; super->totalTasks++; if (proc->state == 'R') super->runningTasks++; proc->show = ! ((hideKernelThreads && Process_isKernelThread(proc)) || (hideUserlandThreads && Process_isUserlandThread(proc))); proc->updated = true; } } bool ProcessList_isCPUonline(const ProcessList* super, unsigned int id) { assert(id < super->existingCPUs); // TODO: support offline CPUs and hot swapping (void) super; (void) id; return true; }